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Benvolguts i benvolgudes,

Primer de tot ens volem disculpar de no poder estar presents en aguestes jornades de
sistemes dinamics que tenen lloc a casa nostra i compartir el dia amb companys i
companyes molt especials.

Volem donar les gracies per ’honor que ens suposa rebre aquest premi. Volem
accentuar aquestes gracies a en Carles Simd, que sense la seva iniciativa d’establir el
premi aquest no seria possible.

Moltissimes gracies i records des d’Uppsalal

Jordi-Lluis Figueras
Alejandro Luque
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On computer assisted proofs
and KAM theory
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On Computer Assisted Proofs

Computer assisted proofs is a very interesting area in which it is possible to
find a meaningful collaboration between Mathematicians (proving theorems of
the right kind), Computer Scientists (developing good software tools that
relieve the tedium of programming the variants required) and Applied
Scientists (that have challenging real life problems).

Rafael de la Llave
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On Computer Assisted Proofs

Computer aided proofs in dynamical systems back more than 30 years ago, and have
lead to proofs of long-standing problems:

@ Feigenbaum conjecture [Lanford 82][Lanford 84];
@ Existence of Lorenz attractor [Tucker 99, 02].

Nowadays, there are research groups developing software:
@ CAPD, Computer Assisted Proofs in Dynamics (P. Zgliczynski);
@ CHOMP, Computational Homology Project (K. Mischaikov).

... and many researches making advances in the field (G. Arioli, H. Koch, J.P. Lessard,
J. Mireles-James, J.B. Van Der Berg, Rafael de la Llave, Jordi-Lluis Figueras, etc. )
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In this talk

The goal of this talk is to present a methodology to perform Computer Assisted Proofs
in KAM theory, for Lagrangian tori for exact symplectic maps, based on the
parameterization method [Figueras, Haro, Luque 186].

Main tools:

@ KAM theorem in an a posteriori format [de la Llave 01], [Gonzalez, Jorba, de la
Llave, Villanueva 05],[Haro,Luque 16];

@ FFT sharp bounds of analytic norms [Epstein 05];
@ Assignation of Diophantine constants to interval vectors of frequencies;
@ Sharper Rissman estimates [Rissmann 75, 76].

Applications:
@ Validation of the golden torus for the standard map;
@ Validation of meandering invariant tori.
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A motivation: the golden curve of the standard map

The standard map

For the standard map

F.:TxR — TxR

[ (SR
xy) — (x+y- > sin(2rx),y — o sin(27x)).

We take w = (v/5 — 1)/2.

For e = 0, the torus parametrized by

is invariant, and its internal dynamics is a rotation by w.

We continue the torus for € > 0.
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A motivation: the golden curve of the standard map

Continuation of the golden curve

Figure : Phase portrait for¢ = 0.1,0,3,0.7,0.97
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A motivation: the golden curve of the standard map

Precedents of CAP

Classical KAM methods are based on the use of canonical changes of coordinates.
They typically consider perturbative problems and take advantage of the existence of
action-angle coordinates.

The golden torus persist for ...
@ ¢ < 0.029 [Herman 86] ;
@ ¢ < 0.68 [Celletti, Chierchia 88];
@ ¢ < 0.91 [de la Llave, Rana 90, 91].

The critical value is . ~ 0.97163540
(using e.g. Greene’s method, blow up of Sobolev norm).

We know that for 0.9718 the curve does not exist [Jungreis 91].

A goal: to obtain persistence for e = 0.9716.

We will use a posteriori KAM result, instead of a perturbative result.

See [Figueras, Haro 12] for validation of fiberwise hyperbolic invariant tori on the verge
of breakdown in non-autonomous (quasi-periodic) dynamical systems.
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An a posteriori KAM theorem
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Exact symplectic maps and invariant tori

@ Let A C T” x R” be an annulus, with coordinates z = (zi, . . ., Z2n)-
@ A is endowed with an exact symplectic form w = de. In coordinates:
a(z) = (ai1(2), ..., an(2)", Q(z) =Da(z)" - Da(z).

@ An exact symplectomorphism F : A — A is a diffeomorphism such that
F*a — o = dS for a primitive function S : A — R. In particular, F*w = w.

@ Atorus K, parameterized by K : T" — A, is F-invariant with frequency w € R” if
FoK=KoR,,
where R,,(6) = 0 + w.
@ We assume F is homotopic to the identity, and K is homotopic to the zero section.

@ We work in the real-analytic category.

A. Haro (UB) CAP KAM BCN 17 12/42



The KAM theorem

Statement

KAM theorem (a posteriori format)

Given w € R” (v, 7)-Diophantine: (k,m) € Z" x Z,k #0 = |k - w —

Given K: T" — A, let E: T" — R" x R" be the error function

|k|1

E=FoK—-KoR,.

Assume that K satisfies certain non-degeneracy conditions.
Then, for every 0 < poo < p1 < p there exist constants ¢4 and &, such that if

<4 ”E Hp
<1,
74P4T

then there exists a F-invariant torus Ko, = Ko (T"), with frequency w, analytic in T} __
and continuous in T__, and close to the initial approximate solution:

Koo = Klpeo <

2 2-,— ” HP
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The KAM Theorem
Hypothesis on the initial objects

Hypothesis 1: The 2-form w, the 1-form « and the map F are real-analytic and can be
holomorphically extended to some complex strip 53, and such that

125 < cao, IDQs < ca1,
IDals < Car,  |D?als < Cap,
IDF|s < cr1,  [D*Fls < cre.

There is a bundle A/°, parameterized by N° : T" — R2™" where N° can be
holomorphically extended to T}, for some p > 0, and continuously to T}, with

0 0\ T
INTlp < cno I(INT) o < Cho-

Hypothesis 2: The torus K can be holomorphically extended to Ty, and continuously
to T}, with K(T}) C B and

IDK|, <o,  IDK'|, <oi,  dist(K(T}),d8B) > 0,

Note: All the norms are sup-norms.
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The KAM Theorem
Non-degeneracy conditions

Hypothesis 3 [transversality condition]: The n x n-matrix valued map
G(0) = —DK(0) "Q(K(6))N°(9)
is non-singular, and 1G], < o6, IG™T, < ok
Hence, the 2n x 2n-matrix valued map
P(#) = (DK(6) N(9)),

with
N(6) = L(0)A(9) + N°(6)B(6),
1

B(9) = G(6) ", A(6) = —5B(6) " N°(6) " Q(K(9))N°(6) B(6),

2
is non-singular.
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The KAM Theorem
Non-degeneracy conditions

Hypothesis 4 [twist condition]: The average of the n x n-matrix valued map
T(0) = N(6 +w) " Q(K(0 + w)) DF(K(8)) N(8).

is invertible, and [T < or.

The torsion T measures the twist of the complementary normal bundle N.

The torus is twist if the torsion is non-degenerate.

A. Haro (UB) CAP KAM BCN 17 16 /42



The KAM Theorem
The constants ¢4 and ¢,

The proof of the KAM theorems consist of proving the convergence of a Newton-like
method, in which the analyticity strip of the objects is reduced at each step.
From
@ the initial analyticity strip p = po,
@ the second analyticity strip p1 = p — d, with §o = 4,
@ the limiting analyticity strip poo,
the intermediate analyticity strips are given by the recurrence

@ ps = ps—1 — 30s_1,
_ 051
@ s = ; .

with

P — poo
P1 — Poo

The proof is constructive and provides explicit formulae for the constants ¢4 and ¢,.

The proof relies in delicate interactions between Geometry (symplectic properties) and
Analysis (small divisors problems). J
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Towards the CAP-KAM
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To-do list

@ Task1: To obtain FAST, rigorous and sharp estimates of analitic norms for
functions depending on multiple angles, using FFT.

@ Task 2: To assign Diophantine constants to a frequency vector. This vector may be
given with finite precision.

@ Task 3: To obtain sharp Rissmann’s estimates that improve the applicability of the
KAM theorem.
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Task 1: Fast and sharp control of analytic norms

Approximation by DFT

E.L. Epstein. How well does the finite Fourier transform approximate the Fourier
transform? CPAM 2005.

Theorem

Let f : T; — C be a holomorphic and bounded function in the complex strip T} of size

p > 0. Let f be the discrete Fourier approximation of f in the regular grid of size
N = (Ni,...,Np). Then, for 0 < p < p:

IF = fl, < Cn(p, DI,

where Cn(p, p) — 0 when all N; — oo.

[Epstein 05] considers the case n =1 and p = 0.

Corollaries: rigorous error bounds in FFT products and inverses.

Consequences: the computational cost of the computations is O(Np log Np), where
Np = Ni...N,.
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Task 2: Obtaining Diophantine constants

Proposition

Letw = [],[a, bi] be an interval vector. Let M > n be such that for any w € w,
k € Z" with0 < |k|y < M, and m € Z, we have k -w — m # 0. For any T > n, we define

(e, 7) = min{|k-w — m||k|]] : w € w, 0< |kly <M, me Z}.

Then, for any positive v < yu(w, 7), we have that the relative measure of the set of
(v, 7)-Diophantine vectors in w is

meas (Res(w, v, 7)) C(w, n)y C(w, n)ym(w, 7)
meas(w) >1- (r = n)M7—n z1- (m— n)IX/IT*" ’

plw,7,7) =1

22" (diam(w))"

where C(w, n) = (n—1)! meas(w)

Moreover, the equation for T
(T - n)MT_n - C(w7 n)’YM(va) =0

has a unique solution T (w). As a consequence, for any pair (v, ) with T > (@)
and v < yu(w, Tm(w)), we have p(w,~,7) > 0.

v

A. Haro (UB) CAP KAM BCN 17 21/42



Task 2: Obtaining Diophantine constants

Diophantine estimates with quadratic irrationals

/H2
Wab = %ﬂab, [w&b — 2_507wa,b + 2_50] C w.
la b] v < T2 |
1 1| 0.381966011250104 1.26
1 2| 0.267949192431121 1.23
1 3| 0.208712152522079 1.21
1 4| 0.171572875253808 1.19
1 5] 0.145898033750314 1.18
1 6 | 0.127016653792582 1.17
2 1 | 0.366025403784437 1.26
2 2 | 0.413767832000904 1.27
2 3 | 0.300011472016747 1.24
2 4 | 0.235323972166368 1.22
2 5] 0.192798030208926 1.20
2 6 | 0.163806299636515 1.19
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Task 3: Obtaining sharper Rissmann estimates

Lemma [sharper Rissmann estimates]

Assume DC, analyticity and the equation u(0) — u(6 + w) = v(6) — (v). Then, the only
zero-average solution satisfies

cr(6
2Dy,

”u"p—5 <

with

72527—2ne—47r|k\1 ) 2n—3<(27 2-,—) oo -
cr(d) = T L w2re—v du,
O<%:<L 4|sin(rk - w)|? (2m)? s (L)

where ((a, b) = Z(b + j)~ % is the Hurwitz zeta function.
j>0

Remark:

V2r-3¢(2,27)r(2r + 1)

cr(d) < cg:= @r)

(cr follows from [Rissmann 75,76]).
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Task 3: Obtaining sharper Rissmann estimates

Examples

Wa,b Ccr(d) <
a b L=0 [ =01 0=0.01 6=0.001 06=0.0001 4 =0.00001
1 1] 6.53e-02 | 1.70e-02 1.01e-02  5.57e-03 3.06e-03 1.68e-03
1 2| 6.76e-02 | 1.40e-02 8.84e-03  5.26e-03 3.08e-03 1.79e-03
1 3| 6.92e-02 | 1.29e-02 8.71e-03  5.18e-03 3.29e-03 1.98e-03
1 4 | 7.09e-02 | 1.25e-02 8.36e-03  5.84e-03 3.60e-03 2.21e-03
1 65| 7.18e-02 | 1.23e-02 7.88e-03  5.47e-03 3.93e-03 2.62e-03
1 6 | 7.27e-02 | 1.24e-02 8.01e-03  5.19e-03 3.59e-03 2.59e-03
2 1| 6.53e-02 | 1.74e-02 1.04e-02  5.78e-03 3.21e-03 1.75e-03
2 2| 6.46e-02 | 1.87e-02 1.09e-02  5.85e-03 3.14e-03 1.68e-03
2 3 | 6.68e-02 | 1.63e-02 9.88e-03 5.56e-03 3.12e-03 1.77e-03
2 4 | 6.84e-02 | 1.53e-02 9.71e-03  5.85e-03 3.53e-03 2.12e-03
2 5| 7.01e-02 | 1.50e-02 9.60e-03  5.78e-03 3.43e-03 2.04e-03
2 6 | 7.09e-02 | 1.48e-02 9.04e-03  5.05e-03 2.95e-03 1.98e-03
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The CAP-KAM algorithm




The CAP-KAM algorithm
Bounds on initial objects

Given a parameterization K (as a truncated Fourier series), approximately invariant, we
define, for o > 1,

oL = |DKlp0, of = DK |,0, o6 = |Bl,0, 06 = |B"[,0,07 = [(T)"" |0

We take poo = 0.
We have to select values of p, §, o, p that would satisfy

CIEL
vt
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The CAP-KAM algorithm
Verification of hypothesis 1

In order to control the global objects we introduce the domain
B={(x,y) €C"/Z" x C" : [imx]| < ds + p+ |K'|F,p, yil < ds+K|F,},

and in order to control FFT approximations we introduce the domain

B={(x,y) €C"/Z"x C" : [imx| < p+ |K'|r.p» il < 1KY IF.5)-
We compute the upper estimates
IDa|s < Cat, [D?als < Ca2, Qs < Cao, D5 < o,

IDFls < cras  [DPFls < crp,

which appear in the KAM theorem, and the upper estimates

12|

g <Ca, Rl

5 < Crpe

In the standard case, a0 =1, Ca,1 =0, Cay = 1 and ¢z = 0.
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The CAP-KAM algorithm
Error upper bounds

The initial parameterization satisfies the invariance equation up to an error

KX(0) + FX(K(8)) — KX(0 + w) — w
EO) = ( " EIK(6) - K0+ w) ) '

For instance, for the standard map

_ (Ko(0) + 5 sin(2rK*(0)) — Ko (0 + w) — w
E@©) = ( T Zsin(enk(6)) — KJ(0 +w) ) '

Notice that the difficult part is sin(2rK*(6)) that contains infinitely many Fourier modes.
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The CAP-KAM algorithm
Error upper bounds

Using our approximation theorem (task 1), since K, equals its DFT f(p, the error

_ KX(0)+FX(K(0))7w7KX(9+w)
E“”‘(p FL(K(0)) —K§(9+w))

can be bounded from its DFT E by

|El, < 1Elo + Cn(p, A)IFolls:
where we take 0 < p < p.

Similar ideas lead to obtain rigorous upper bounds to validate the non-degeneracy
conditions, from discrete Fourier transforms.

We can validate the rest of the hypotheses of the KAM theorem, and check the
condition on the error bounds.

The consequence is that the CAP has a cost O(Np log(Np)).
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Example 1: The standard map
and the golden curve
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The standard map and the golden curve

We consider the standard map

Fo:TxR — TxR
g . g .
xy) — (x+y- > sin(2rx),y — > sin(27x)).

We continue with respect to ¢ the torus K with rotation vector w = %\/5 -1.

We consider the transversal bundle Ny(0) = (0, 1).
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Application of the a posteriori KAM theorem

Proof of existence of golden curve for moderate values of €

We use v = 355, 7 = 1 and the ad hoc Riissmann estimates.

~ [OF3 [oPY2)

S S o R S N |-

0.06 128 1.606160e-02 3.212319e-03 1.670325e-01 5.064098e-06 2.569855e-01 1.35e-28 9.47e-34
0.16 256 1.369960e-02 2.739919e-03 9.673976e-02 2.937365e-06 1.369960e-01 9.24e-28 3.77e-33
0.26 256 1.369960e-02 2.739919e-03 6.974093e-02 2.044422e-06 1.301462e-01 1.74e-26  4.94e-32
0.36 512 1.369960e-02 2.739919e-03 5.229422e-02 1.400906e-06 7.534778e-02 || 4.24e-25 8.26e-31
0.46 512 1.369960e-02 2.739919e-03 3.941981e-02 9.278480e-07 7.534778e-02 || 1.76e-23 2.27e-29
0.56 512  4.520867e-03 8.908112e-04 1.268703e-02 9.401294e-08 6.329214e-02 || 9.39e-24 1.24e-30
0.66 | 1024 3.300233e-03 5.973272e-04 1.047736e-02 4.061043e-08 3.300233e-02 || 1.88e-23 1.11e-30
0.76 | 1024 2.310163e-03 4.017675e-04 5.924431e-03 1.166394e-08 3.003212e-02 || 2.32e-18 3.98e-26
0.86 | 2048 1.178183e-03 1.996921e-04 1.921375e-03 1.234843e-09 1.531638e-02 1.74e-17  3.19e-26
0.96 | 32768 1.178183e-04 1.971855e-05 3.648874e-05 5.996316e-13 1.060365e-03 || 2.34e-12 2.09e-24

For e = 0.96, the computation takes 117 seconds, using interval arithmetic with 267
bits (80 digits).
With the ad hoc Riissmann estimates we obtain
(’:1 bE Q:ZbE
,}/4p47

With the classical Riissmann estimates we obtain

<2.34-107"2, <2.09-107%;

(’:1 bE Q:Z bE

<5.42-1078, <1.71-1072".
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The golden curve for 0.9716

Fore = 0.9716, the standard map has a golden invariant curve.

Proof.

We compute K using the parameterization method with Np = 8388608 Fourier coefficients, and
this parameterization satisfies | E|lo < 2.74 - 10~4!. Setting the parameters, we take

p=3.748290 - 107, 5 =6.273289 - 108, oc—1=1.610158-10"2,

ds = 3.159428-1072', 5 =4.872777 106,

to apply the validation algorithm with precision of 367 bits and obtain (after 11404 seconds in a
single processor Intel(R) Core(R) CPU at 3.50 GHz):

(0)
- <0.0823.
barad
The proof follows from the KAM theorem. Moreover, the golden curve satisfies
&b
1Koo = Klpoo < 25 <3.89-10722.
YepT

O

v
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The golden curve for 0.9716

0 500000 le+06 1.5e+086 2e+06 0 500000 le+06 1.5e+06 2e+08

Figure : Fourier modes of the validated parameterization of the golden invariant curve for e = 0.9716:
(left) k +— 10gyo (| Ky i |); (right) k +— Iog1o(|K,fyk\).
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Example 2: Validation of a
meandering invariant curve
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The non-twist standard map

A meandering invariant curve

We consider the non-twist standard map

F:TxR — TxR
(x.y) — Xy)=x+F+ M)+ r),y — 5 sin(2nx))
with parameters A\ = 0.1, Ao = —0.2 and ¢ = 0.45.

It (apparently) has a meandering invariant curve with w = ¥2=1.
The torsion is (T) ~ 0.03090083.

Figure : Meandering invariant curves for Ay = 0.1, A, = —0.2 and ¢ = 0.45.
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Validation of a meandering invariant curve

Theorem
For\1 = 0.1, A\, = —0.2 and ¢ = 0.45, the non-twist standard map has a meandering
invariant torus with rotation number w = %

Proof.

We compute K with Np = 2048 and ||E|jp < 10—,

Rigorous computations are performed using interval arithmetics with 267 bits.
We enclose w in a tight interval of length 10—8° (to compute ~, 7).

We select parameters

p=1.223945.10"3%,  §=12.048444-10"%  5—1=1.601973-10""",

ds =8.333835-10722, 5 =1.835918 102

We use our ad hoc Rissmann estimates.
The obtained result is (after 65 seconds in a single processor Intel(R) Xeon(R) CPU at 2.40 GHz),
¢1 bE szE

< 0.0343,
’74P4T

| A\

< 3.78-10723,
72p27' —

and the proof follows from the KAM theorem. O
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Conclusions and future work
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Conclusions

@ We have presented a general KAM result with very sharp and explicit estimates for
all the objects involved.

@ The proof results in an efficient numerical method to compute invariant tori that we
have implemented in a very general and flexible way.

method for invariant manifolds: from rigorous results to efective computations, Applied

A. Haro, M. Canadell, J.LI. Figueras, A. Luque, J.M. Mondelo, The parameterization
Mathematical Sciences 195, Springer (2016). J

@ Numerical computations can be rigorously validated using the KAM theorem.
@ The methology works in the far-from-integrable regime.
@ We have also results for 2D tori (Froeschlé map).

J.LI. Figueras, A. Haro. A. Luque, Rigorous Computer-Assisted Application of KAM
Theory: A Modern Approach, Foundations of Computational Mathematics (2016). J
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@ We plan to apply the CAP methodology to higher dimensions and consider more
complex problems, e.g. in Celestial Mechanics.

There are CAP of KAM tori in Celestial Mechanics by using classical methods in a
very delicate way [Celletti, Chierchia 97],[Locatelli 98],[Locatelli, Giorgilli 00, 05].

@ We pretend to obtain estimates on the measure of invariant tori in phase space.

@ We are currently working in computing rigorous and realistic lower bounds of
measure in parameter space for reducibility of families of analytic cercle maps.

@ We plan also to consider the problem of computing rigorous and realistic lower
bounds of measure of spectrum of quasi-periodic Schrodinger operators.
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Prediction is very difficult, especially about the future.
Niels BohrJ
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Moltes gracies !
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